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THE STRUCTURAL INVARIANTS OF GOURSAT DISTRIBUTIONS

SUSAN JANE COLLEY, GARY KENNEDY, AND COREY SHANBROM

Abstract. This is the first of a pair of papers devoted to the local invariants of Goursat
distributions. The study of these distributions naturally leads to a tower of spaces over

an arbitrary surface, called the monster tower, and thence to connections with the topic of

singularities of curves on surfaces. Here we study those invariants of Goursat distributions
akin to those of curves on surfaces, which we call structural invariants. In the subsequent

paper we will relate these structural invariants to the small growth invariants.

1. Introduction

This is the first of a pair of papers devoted to the local invariants of Goursat distributions. A
distribution D on a smooth manifold M is a subbundle of the tangent bundle TM . It is called
Goursat if the Lie square sequence

D = D1 ⊂ D2 ⊂ D3 ⊂ · · ·
(as defined in Section 2) is a sequence of vector bundles for which

rankDi+1 = 1 + rankDi

until one reaches the full tangent bundle. As realized by Montgomery and Zhitomirski [18], the
study of Goursat distributions naturally leads to a tower of spaces over an arbitrary surface,
called the monster tower, and thence to connections with the topic of singularities of curves
on surfaces. In the local study of such curves and in the local study of Goursat distributions,
an important role is played by invariants: for curves on surfaces there are many well-studied
invariants, such as those listed on page 85 of [24], whereas for Goursat distributions we have
notions related to the analysis of the small growth sequence, which we define in Section 15. (We
spell out precisely what we mean by “invariant” in Sections 2 and 7.)

The aims of this pair of papers, taken together, are

(1) To give a systematic account of those invariants of Goursat distributions akin to those
of curves on surfaces, including the Puiseux characteristic — we call them structural
invariants;

(2) To explain how they lead to the standard invariants of the small growth sequence: the
small growth vector, Jean’s beta vector ([13]), and its derived vector;

(3) To present effective recursive methods for calculation.

This paper is devoted to aim 1 and the subsequent paper to aim 2 ; our third aim is addressed
throughout both. Our analysis uses the monster tower, which ties together the notions of
prolonging a Goursat distribution and lifting a curve. Our starting point is the RVT codes,
which provide a way of assigning a code word to each germ of a Goursat distribution and to each
irreducible curve germ. Furthermore, our analysis is recursive. In fact, there are two compatible
notions of recursion in play, which we call front-end and back-end recursions.

Since we use the monster tower, our account of invariants of curves on surfaces is based
on the idea of Nash modifications. Specialists in singularity theory tend to be more familiar
with the theory of point blowups. (Intuitively, Nash modification uses tangent lines, whereas
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ordinary blowing-up uses secant lines.) Most of our basic definitions and all of our structural
invariants can be interpreted in the alternative framework of embedded blowups; Section 11
briefly explores this approach. We have tried to give a relatively self-contained exposition, and
thus we sometimes offer our own versions of proofs already found elsewhere, especially in [18].
We do this, in part, so as to provide convenient references for our subsequent paper. Our other
chief references are [19], [20], and [24].

Figure 1 shows the invariants we will analyze in the two papers; we will also explain the
relationships indicated by the arrows. Figure 2 presents an example, using the same layout.

RVT code word Puiseux characteristic

Multiplicity sequence

Vertical orders vector

Goursat
code word

Restricted
Puiseux characteristic

Small growth vector

Jean’s beta vector
Derived vector

Second derived vector
Restricted vertical orders vector

Figure 1. The invariants listed in the top three boxes are invariants of points
on monster spaces (as defined in Section 5) and of focal curve germs (as defined
in Section 7), akin to invariants of curves on surfaces; the others are invariants of
germs of Goursat distributions (as defined in Section 2). The invariants listed
in the bottom box are invariants obtained by considering the small growth
sequence (as defined in Section 15).

Section 2 recalls the basic definitions of Goursat distributions, and Section 3 explains how
their basic structural theory leads to code words in the alphabet R, V , T . Section 4 reviews
the notion of prolongation, while clarifying a ubitiquous construction in differential geometry
which seems never to have been baptized; we coin the term extension. Section 5 introduces
the monster tower, while Section 6, following [18], explicates how it is universal for Goursat
distributions. Section 7 explains the terminology of focal curve germs. Section 8 explains how
one naturally introduces coordinates on the spaces of the monster tower. Section 9 gives the
basic stratification theory of divisors at infinity and their prolongations, while Section 10 uses
this theory to enlarge the scope of the theory of code words. The brief Section 11 is something of
a digression: it explores how several of the notions of the prior sections can be interpreted using
embedded resolution via point blowups. With Section 12, we begin to look at the structural
invariants; this section is devoted to the Puiseux characteristic, while the subsequent Sections 13
and 14 handle the multiplicity sequence and the vertical orders vector (again a new coinage).
The final Section 15 is a brief introduction to the small growth sequence, whose invariants will
be the subject of our subsequent paper.

We thank Richard Montgomery, Piotr Mormul, Lee McEwan, Justin Lake, Tom Ivey, and
Fran Presas for valuable discussions.
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RVTVRVRVT

RRVRVRVT

[30; 42, 45, 46]

[12; 30, 33, 34]

30,12,12,6,6,3,3,1,1,1, . . .

(18, 0, 6, 0, 3, 0, 2, 0)

12,12,6,6,3,3,1,1,1, . . .

(0, 6, 0, 3, 0, 2, 0)

RRRVRVRVT

RRVRVRVT

[12; 42, 45, 46]

[12; 30, 33, 34]

2,3,4,5,5,5,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,11, . . .

(1, 2, 3, 4, 7, 10, 16, 22, 34, 46)

(1, 1, 1, 3, 3, 6, 6, 12, 12)

(0, 0, 2, 0, 3, 0, 6, 0)

(0, 6, 0, 3, 0, 2, 0)

2,3,4,5,5,5,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10, . . .

(1, 2, 3, 4, 7, 10, 16, 22, 34)

(1, 1, 1, 3, 3, 6, 6, 12)

(0, 0, 2, 0, 3, 0, 6)

(6, 0, 3, 0, 2, 0)

Figure 2. An example of the invariants of Figure 1. The dashed arrows indicate
compatible front-end recursions.

2. Goursat distributions

We begin with a smooth manifold M of dimension m ≥ 2. Let D be a distribution on M ,
i.e., a subbundle of its tangent bundle TM . Let E be its sheaf of sections, which is a subsheaf
of the sheaf ΘM of sections of TM . In other words, let ΘM be the sheaf of vector fields on M ,
and let E be the subsheaf of vector fields tangent to D.

The Lie square of E is

E2 = [E , E ],

meaning the subsheaf of ΘM whose sections are generated by Lie brackets of sections of E and
the sections of E itself. Note that in general the rank of E2 may vary from point to point. If,
however, E2 is the sheaf of sections of a distribution D2, then this rank is constant. Beginning
with E1 = E , recursively we define Ei+1 to be the Lie square of Ei, and we call

E1 ⊆ E2 ⊆ E3 ⊆ · · · (2.1)

the Lie square sequence.
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Let d be the rank of D. We say that D is a Goursat distribution if each sheaf Ei is the sheaf
of sections of a distribution Di and if

rankDi+1 = 1 + rankDi

for i = 1, . . . ,m−d. In particularDm−d+1 is the tangent bundle TM . For a Goursat distribution,
the sequence

D = D1 ⊂ D2 ⊂ D3 ⊂ · · · ⊂ Dm−d ⊂ Dm−d+1 = TM

is also called the Lie square sequence. Since a distribution of rank 1 is always integrable, a
Goursat distribution necessarily has rank at least 2.

In the literature on Goursat distributions, it is generally assumed that the corank m− d is at
least 2. We find it more convenient to allow these trivial cases:

• D = TM ,
• D has corank 1, and its Lie square is TM ,

and call all other cases nontrivial.
Since we are interested in local issues, we will work with germs of distributions. A Goursat

germ consists of a Goursat distribution D on a manifold M and a point p ∈ M ; if necessary for
our constructions we will replace M by a neighborhood of p. We say that the germ is located at
p. Suppose that (M,D) and (M ′, D′) are Goursat germs. A local diffeomorphism from M to M ′

taking p to p′ is said to be an equivalence of Goursat germs if its derivative takes D to D′. An
invariant of Goursat germs is a function on the set of equivalence classes. Note that passage to
a smaller neighborhood does not change an invariant. See Section 7 for further remarks about
Goursat invariants and their relation to focal curve germ invariants (as defined therein).

3. Code words of Goursat germs

Fix a Goursat germ D at the point p ∈ M . Let d ≥ 2 be the rank of D and let m ≥ d be
the dimension of M . We give here a self-contained account of how one defines the Goursat code
word of D at p; this is a word of length m − d in the symbols R, V , and T , which stand for
regular, vertical, and tangent. (In the literature on Goursat distributions, these may be called
RVT code words, but we prefer to reserve that usage for the slightly more general code words
defined in Section 10.) Our account draws upon four sources: Section 9.1 of [15] lays out the
basic structural possibilities for Goursat germs; [20] uses these possibilities to attach a code word
(using G rather than R and S rather than V ), invoking the Sandwich Diagram from [18]; the
monograph [19] introduces the now-standard notation.

For a distribution D, let L(D) denote its Cauchy characteristic. This is the sheaf of vector
fields v in D that preserve D, meaning that [v,D] ⊂ D. If L(D) is of constant rank, then it is
a subdistribution of D, and we mildly abuse notation by writing L(D) for both the distribution
and its sheaf of sections.

Lemma 1 (Sandwich Lemma of [18]). For a nontrivial Goursat distribution D, its Cauchy
characteristic has constant rank and is therefore the sheaf of sections of a subdistribution. We
have

L(D) ⊂ L(D2) ⊂ D

and both inclusions are of corank one.

Proof. We begin with some remarks on a skew-symmetric bilinear form ω on a finite-dimensional
vector space V . We say that a subspace W is isotropic if the restriction of ω to W is trivial.
(Surprisingly, this is not fully standard terminology; it is found, however, in [14, Definition
1.2.4].) By the classification theory of such forms, as found in [11, Section 10.3] or [4, Section
1.1], one infers that if there is an isotropic subspace W of codimension one and if ω is nontrivial,
then the kernel of ω has codimension one in W .
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Consider the map

D2 ×D2 → D3/D2

obtained by composing the Lie bracket with the quotient map. Choose a local basis of sections
for D2 and restrict this map to the fibers at a point p:

D2(p)×D2(p) → D3/D2(p) (3.1)

Since D3/D2(p) is one-dimensional, this is a skew-symmetric bilinear form. The subspace D(p) is
isotropic and of codimension one inside D2(p); thus the kernel L(D2)(p) of (3.1) has codimension
one inside D(p).

Similarly consider the skew-symmetric bilinear form

D(p)×D(p) → D2/D(p) (3.2)

and observe that the subspace L(D2)(p) is isotropic and of codimension one inside D(p); thus
the kernel L(D)(p) of (3.2) has codimension one inside L(D2)(p). □

The Sandwich Lemma can be applied to every nontrivial member of the Lie square sequence
of a Goursat distribution to yield the following diagram, in which each inclusion has corank one.

D = D1 ⊂ D2 ⊂ · · · ⊂ Dm−d−1 ⊂ Dm−d ⊂ TM

∪ ∪ ∪

L(D1) ⊂ L(D2) ⊂ L(D3) ⊂ · · · ⊂ L(Dm−d)

(3.3)

By the Jacobi identity, each L(Di) is involutive, so the Frobenius theorem shows that it induces
a foliation, called a characteristic foliation.

To define the Goursat code word, we associate a symbol with each square

Di ⊂ Di+1

∪ ∪

L(Di+1) ⊂ L(Di+2)

(3.4)

of diagram (3.3) and then read off the word from right to left. We also associate the symbol R
with each of the two incomplete squares at the right end, so that each Goursat code word begins
with RR. Thus the symbol associated with the square of (3.4) will be the symbol of the code
word in position m− d− i+ 1.

To begin, looking at the fibers of our sheaves at p, we remark that we know two natural fillings
W for the sandwich

L(Di+1)(p) ⊂ W ⊂ Di+1(p),

since we could use either the hyperplane W = Di(p) or the hyperplane W = L(Di+2)(p). We
will be particularly interested in the case where the two fillings coincide.

Definition 2. If Di(p) = L(Di+2)(p) for some i ∈ {1, 2, . . . ,m− d− 2}, then we say that D is
singular at p.

If D is not singular at p, then we associate to it the code word of length m − d consisting
entirely of the letter R. In the singular case, we find it convenient to introduce coordinates;
these coordinates were employed in [15], and later authors call them Kumpera–Ruiz coordinates.
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Lemma 3. Suppose that D is a nontrivial Goursat germ on M at p. Consider these sheaves:

D ⊂ D2

∪

L(D) ⊂ L(D2)

(1) There is an ordered pair of coordinate functions x and y, part of a system of local
coordinates, for which the sheaf L(D2) is defined inside D2 by dx = dy = 0.

(2) For any such pair of coordinates, either there is a third coordinate y′ and a constant C
so that D is defined inside D2 by dy = (C + y′)dx (we call this the ordinary situation)
or there is a third coordinate x′ so that D is defined inside D2 by dx = x′dy (we call this
the inverted situation).

(3) In the ordinary situation, the sheaf L(D) is defined inside D2 by dx = dy = dy′ = 0,
and in the inverted situation by dx = dy = dx′ = 0.

Observe that if we reverse the order of x and y, the inverted situation becomes the ordinary
situation with constant 0. In the ordinary situation, the following diagram shows the equations
described in the lemma. These are equations defining the sheaves inside D2; thus of course the
box at top right is empty.

dy = (C + y′)dx ⊂

∪
dx = 0
dy = 0
dy′ = 0

⊂ dx = 0
dy = 0

(3.5)

Proof. As we have remarked, the distribution L(D2) is involutive and thus comes from a foliation.
Since L(D2) is of corank 2 in D2, there must be local coordinates x and y for which L(D2) is
defined inside D2 by the vanishing of dx and dy. Since D is of corank one inside D2, at every
point we have a single dependence between dx and dy: we must have dy = (C + y′)dx in some
neighborhood of p for some coordinate function y′, or dx = x′dy for some coordinate function
x′. (The possibilities form a projective line, and the last possibility accounts for the point at
infinity.)

One finds that the differential ideal of L(D) is generated by dx, dy, and dy′ in the ordinary
situation, and by dx, dy, and dx′ in the inverted situation. This can be computed directly, but
also appears in [18, p. 463], and follows from the Retraction Theorem for exterior differential
systems ([12, Proposition 6.1.17] or [2, Theorem 1.3] or [23, Theorem 5.4]). □

We return to the definition of the Goursat code word, by probing further the case where D
is singular at p. If Di(p) = L(Di+2)(p) for some i ∈ {1, 2, . . . ,m− d− 2}, then we associate the
letter V with the square of (3.4). It will be convenient to introduce the notation

N(V )i = {p ∈ M : Di(p) = L(Di+2)(p)}. (3.6)
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We claim that there are local coordinates so that the sheaves of (3.4) are defined inside Di+2

by the corresponding equations shown here:

dy = (C + y′)dx
dx = x′dy′

⊂ dy = (C + y′)dx

∪ ∪
dx = 0
dy = 0
dy′ = 0

⊂ dx = 0
dy = 0

Indeed, since we are not concerned with the ordering of x and y, we can assume that in the
square that would appear just to the right we are in the ordinary situation. Thus, except for
the box at top left, our claim is immediate from Lemma 3 applied to Di+2. If we now consider
the equations of these sheaves inside Di+1, then the equations at the bottom left reduce to
dx = dy′ = 0. Thus x and y′ are appropriate Kumpera–Ruiz coordinates for which we can apply
part 2 of Lemma 3. Among the possibilities given, the only one for which p ∈ N(V )i is the
inverted situation: dx = x′dy′. Furthermore we see that locally the locus N(V )i is given by
x′ = 0, a nonsingular hypersurface.

We now consider the square of (3.4) together with the square to its left:

Di−1 ⊂ Di ⊂ Di+1

∪ ∪ ∪

L(Di) ⊂ L(Di+1) ⊂ L(Di+2)

(3.7)

Restricting our attention to N(V )i, we consider the intersection of its tangent sheaf ΘN(V )i with
Di. This is of corank one inside Di, and is cut out by the additional equation dx′ = 0. If the
fibers at p of Di−1 and ΘN(V )i ∩Di are the same, then we assign the letter T to the square on
the left. Again it will be convenient to introduce notation for the locus of points for where we
have assigned V to the right square and T to the left square: we let

N(V T )i = {p ∈ M : Di(p) = L(Di+2)(p) and Di−1(p) = (ΘN(V )i ∩Di)(p)}. (3.8)

Assuming that we have assigned T to the left square of diagram (3.7), we claim that the
equations defining the sheaves of this diagram are as follows:

dy = (C + y′)dx
dx = x′dy′

dx′ = x′′dy′
⊂ dy = (C + y′)dx

dx = x′dy′
⊂ dy = (C + y′)dx

∪ ∪ ∪
dx = 0
dy = 0
dy′ = 0
dx′ = 0

⊂
dx = 0
dy = 0
dy′ = 0

⊂ dx = 0
dy = 0

To obtain the equations in the bottom left box, we apply part 3 of Lemma 3, using D = Di+1.
This tells us that L(Di) is defined inside Di+1 by dx = dy′ = dx′ = 0; adjoining the equation
dy = (C+y′)dx = 0 of Di+1 inside Di+2 and simplifying, we obtain the four indicated equations.
To obtain the equations in the top left box, we apply part 2 of Lemma 3 using D = Di. Since we
have assigned T to the left square, we are in the ordinary situation with constant C = 0; thus
dx′ = x′′dy′ should be in our system of equations, together with the two equations cutting out
Di−1 inside Di+1. We remark that the letters V and T are mutually exclusive, since the former
requires the inverted situation and the latter the ordinary situation with C = 0.
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Furthermore we see that the locus N(V T )i is defined inside N(V )i by the additional equation
x′′ = 0. Thus it is a nonsingular submanifold of M of codimension two. Restricting our attention
to N(V T )i, we consider the intersection ΘN(V T )i ∩ Di−1, cut out inside Di−1 by the single
equation dx′′ = 0. If the fibers at p of Di−2 and ΘN(V T )i ∩Di−1 are the same, then we assign
the letter T to the next square to the left.

At this point it becomes clear that all arguments can be repeated: for τ > 1 we recursively
define

N(V T τ )i = N(V T τ−1)i ∩ {p ∈ M : Di−τ (p) = (ΘN(V T τ−1)i ∩Di−(τ−1))(p)}. (3.9)

The locus N(V T τ )i will be a nonsingular submanifold in M of codimension τ + 1, with explicit
equations x′ = x′′ = · · · = x(τ+1) = 0; and we will assign yet another T if

Di−(τ+1)(p) = (ΘN(V T τ )i ∩Di−τ )(p).

Having explained when to associate V or T with a square of diagram (3.3), to finish the
definition of the Goursat code word we declare that in all other circumstances we associate the
symbol R. Thus the possibilities for Goursat code words are circumscribed as follows:

• The first two symbols are RR.
• The symbol T may only be used immediately following a V or T .

The arguments used to prove Lemma 3 also give an Existential Sandwich Lemma, as follows.

Lemma 4. Suppose that D is a nontrivial Goursat distribution of rank greater than 2. Any
distribution E sandwiched between L(D) and D (i.e., of corank one in D and having L(D) as
a corank one subbundle) is Goursat, with Lie square E2 = D (i.e., E is a “Lie square root” of
D). The possibilities for E form a projective line, and the corresponding code word symbol can
be any one of the possible symbols, subject to the constraints just mentioned.

4. Prolongation and extension

The work of Montgomery and Zhitomirskii [18, 19] shows that the study of Goursat distri-
butions naturally leads to the construction of a tower of spaces. Unbeknownst to them, the
construction had previously been used in algebraic geometry, but had never been connected to
Goursat distributions. (This earlier work includes three papers by the first two authors, including
[7].)

Once again we work with a smooth manifold M carrying a distribution D of rank d. We now
describe a general prolongation construction that creates a new manifold and new distribution.

Let M̃ = PD, the total space of the projectivization of the bundle, and let π : M̃ → M be the

projection. A point p̃ of M̃ over p ∈ M represents a line inside the fiber of D at p, and since D
is a subbundle of TM , this is a tangent direction to M at p. Let

dπ : TM̃ → π∗TM

denote the derivative map of π. A tangent vector to M̃ at p̃ is said to be a focal vector if it is
mapped by dπ to a tangent vector at p in the direction represented by p̃; in particular a vector
mapping to the zero vector (called a vertical vector) is considered to be a focal vector. The
subspace of focal vectors is called the focal space. The set of all focal vectors forms a subbundle

D̃ of TM̃ , called the prolongation of D or the focal bundle; its rank is again d. The vertical
vectors form a subbundle, called the vertical bundle or the relative tangent bundle, denoted

T (M̃/M). The terminology of focal vectors, focal bundles, focal spaces, etc., dates back to work
of Semple [21].

In their Proposition 5.1, Montgomery and Zhitomirskii [18] establish the following fundamen-

tal fact: If D is a Goursat distribution of rank 2, then so is D̃.
To be more precise, we need to clarify a construction in differential geometry which seems to

lack a standard terminology or notation. Let φ : N → M be a submersion and let F be a sheaf
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of vector fields on M . The extension of F by φ, denoted φ•F , is the sheaf of all vector fields v
on open sets of N satisfying the condition

dφ(v(q)) ∈ F(φ(q))

at each point q of the open set. If F is the sheaf of sections of a distribution D, then φ•F is
the sheaf of sections of a distribution, which we denote by φ•D. Note that our definition says
v ∈ φ•F if dφ ◦ v is a section of the usual pullback bundle φ∗F . Thus we are not describing the
usual pullback of a bundle, nor is this the usual notion of an inverse image sheaf or a pullback
sheaf in algebraic geometry, as described in [10]. It is, however, consistent with the usage of [3]
and [18]. These authors use the potentially ambiguous notation φ∗; hence our introduction of
new notation and terminology.

Returning to the prolongation construction, we observe that for a distribution D on M , we

have relations among vector bundles on M̃ as indicated in the following diagram.

T (M̃/M)
� � // D̃

_�

��

// // OD(−1)
_�

��

T (M̃/M) �
�

// π•D // // π∗D

The four bundles on the left are distributions, i.e., subbundles of TM̃ . The ranks of the bundles
in the top row are (from left to right) d − 1, d, and 1; the ranks in the bottom row are d − 1,
2d− 1, and d. Here OD(−1) denotes the tautological line bundle.

Suppose that near p ∈ M we have a set of equations cutting out D inside TM . This will be
a set of linear equations in the differentials of the local coordinates with coefficients in the local

coordinates. At a point q ∈ M̃ over p we can use a system of local coordinates including the
local coordinates pulled back from M ; then the very same set of equations cuts out the extension

π•D inside TM̃ . To give equations for the prolongation D̃, let us assume for simplicity that D
has rank 2. Among our coordinate functions at p we can find a pair x and y such that their

differentials dx and dy are independent linear functionals on the fiber of D at p. Then D̃ is cut
out inside π•D by one additional equation expressing the dependence of dx and dy; this will
be either dy = (C + y′)dx (for a suitable local coordinate y′) or dx = x′dy (for a suitable local
coordinate x′).

Returning to the situation of Montgomery and Zhitomirskii’s Proposition 5.1, what they assert
is that if

D ⊂ D2 ⊂ D3 ⊂ · · ·
is the Lie square sequence of a Goursat distribution D of rank 2, then

D̃ ⊂ π•D ⊂ π•D2 ⊂ π•D3 ⊂ · · ·

is the Lie square sequence of D̃, which is again Goursat of rank 2. The assertion is clear from

the general properties of extension, except for the claim that D̃ is Goursat. To see this, one

simply remarks that the relative tangent bundle T (M̃/M) is an involutive subbundle of π•D of

corank 2, and thus must be L(D); then Lemma 4 shows that D̃ is Goursat with Lie square π•D.
Note that

D̃2 = π•D (4.1)

and more generally that D̃i+1 = π•Di.
Since the general prolongation construction, when applied to a manifoldM carrying a distribu-

tion D, yields a new manifold M̃ carrying a new distribution D̃, we can iterate this construction
to obtain an infinite tower of manifolds and submersions

· · · → ˜̃
M → M̃ → M (4.2)
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together with their associated focal bundles.
We consider a curve C on M which has a nontrivial smooth parameterization; henceforth we

will just say “curve.” Suppose that p is a nonsingular point on C. If at p the tangent vector
of C is contained in the fiber of D, we say C is tangent to D at p. We say that C is a focal

curve if it is tangent to D at each nonsingular point. We can associate with p the point of D̃

representing the tangent direction of C at p. Thus, away from singularities, we have a curve C̃

in M̃ , the lift of C. We also want to associate a point (or perhaps several points) of M̃ with a
singular point of C, and we do so by fiat: we lift at all nonsingular points of C, and then take
the closure. Intuitively, we are associating to a singular point all the possible limiting tangent

directions. We observe that the lift of a focal curve on M gives us a focal curve on M̃ , i.e.,
the lift of such a curve will be tangent to the focal bundle. Thus, if we like, we can iterate the
construction by further lifting.

5. The monster tower

If we begin by letting D be the tangent bundle TM , then the tower of (4.2) is called the
monster tower (or Semple tower) over the base manifold M . In the tower

· · · → M(k)
πk−→ M(k − 1)

πk−1−−−→ · · · → M(2)
π2−→ M(1)

π1−→ M (5.1)

we say that M(k) is the monster space at level k. As above, we set m = dim(M) ≥ 2. Each
monster space M(k) is the total space of a fiber bundle over M(k − 1), with fiber a projective
space of dimension m− 1. The focal bundle on M(k) is denoted ∆(k).

In general this has nothing to do with Goursat distributions. If, however, we begin with a
smooth surface S, then its tangent bundle is a trivial Goursat distribution of rank 2; thus the
focal bundles are likewise rank 2 Goursat distributions. In this case the fibers of the maps in
(5.1) are projective lines. The Lie square sequence of the Goursat distribution ∆(k) is

∆(k) ⊂ ∆(k)2 ⊂ ∆(k)3 ⊂ · · · ⊂ ∆(k)k ⊂ ∆(k)k+1 = TS(k).

Continuing to assume that the base manifold is a surface S, we apply (4.1) to πk; this tells us
that the Lie square of ∆(k) can be obtained by extension:

∆(k)2 = π•
k ∆(k − 1). (5.2)

More generally, the other bundles in its Lie square sequence are extensions from lower levels:

∆(k)j = π•∆(k − j + 1), (5.3)

where π : S(k) → S(k − j + 1).
If we apply the lifting construction to the monster tower, the lift of a focal curve on S(k) —

a curve tangent to ∆(k) — is a focal curve on S(k + 1), and we can iterate the construction to
lift upward any desired number of levels in the tower. If in particular we start with a curve C
on S (automatically a focal curve) we obtain curves C(1) on S(1), C(2) on S(2), etc.

As we have said, lifting associates with a singular point all the possible limiting tangent
directions. For example, if the curve C has a node at p, then C(1) will have two points over p,
and if C has a cusp then it has a single point over p, but this will be a nonsingular point on the
threefold C(1). In the mathematical literature, C(1) is also called the Nash modification of C.

6. Universality of the monster tower

As we previously noted, the monster spaces over a smooth surface S naturally carry Gour-
sat distributions of rank 2. In [18], Montgomery and Zhitomirskii show that these spaces are
universal for Goursat distributions of rank 2. More precisely, they show that each nontrivial
Goursat germ of rank 2 on a manifold of dimension m = 2 + k (with k ≥ 2) is equivalent to
the Goursat germ of ∆(k) at some point of S(k). They prove this by a process which they call
deprolongation, which we explicate here, and explain how it leads to the universality. (They also
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define a deprolongation process for Goursat germs of higher rank, but we do not consider that
process here.)

Consider a nontrivial Goursat germ D of rank 2 at the point p ∈ M . Recall that the Cauchy
characteristic L(D2) induces a characteristic foliation; the leaves are curves. Locally, one can
contract these curves, creating a smooth manifold M/L(D2), the leaf space, equipped with a
submersion λ : M → M/L(D2). Since each of the bundles in the Lie square sequence of D
contains the bundle L(D2), we have a sequence

λ∗(D/L(D2)) ⊂ λ∗(D2/L(D2)) ⊂ λ∗(D3/L(D2)) ⊂ · · · (6.1)

of bundles on M/L(D2), with rank(λ∗(Dj/L(D2)) = rank(Dj) − 1 = j. Each of these bundles
extends to the corresponding bundle in the Lie square sequence of D:

λ•
(
λ∗(Dj/L(D2))

)
= Dj .

We claim that if we omit the first bundle λ∗(D/L(D2)) of (6.1) we obtain a Lie square sequence

λ∗(D2/L(D2)) ⊂ λ∗(D3/L(D2)) ⊂ · · · . (6.2)

Indeed, for j ≥ 2 the Cauchy characteristic L(Dj) contains L(D2); thus the Lie square map
Dj ×Dj → Dj+1 yields a surjection from Dj/L(D2)×Dj/L(D2) to Dj+1/L(D2).

Thus λ∗(D2/L(D2)) is a Goursat distribution of rank 2 on the leaf space. We call it the
deprolongation of D.

Part 1 of Lemma 3 tells us that locally L(D2) is defined inside D2 by the vanishing of dx and
dy, where x and y are part of a system of local coordinates. Thus these two functions are constant
on the leaves, and descend to functions on the leaf space. Since the total space of L(D2) is of
codimension 2 inside that of D2, the differentials dx and dy remain independent when restricted
to λ∗(D2/L(D2)). Part 2 of the same lemma then tells us that locally each point of p ∈ M
can be interpreted as a tangent direction to the point λ(p) lying inside λ∗(D2/L(D2)), and that
D is the focal bundle. Thus if we apply the prolongation construction to λ∗(D2/L(D2)), we
obtain a projective line bundle over the leaf space that contains the neighborhood on M with
which we started, and the prolongation of λ∗(D2/L(D2)) is D. In this sense, the operations of
prolongation and deprolongation are inverse processes.

Deprolongation can be applied repeatedly. If we begin with a nontrivial Goursat germ D of
rank 2 and corank k ≥ 2, then we can deprolong it k − 1 times, arriving at a (trivial) Goursat
germ of rank 2 and corank 1, i.e., a distribution germ whose Lie square is the tangent bundle of
the base threefold. It is well known that there is just one such distribution (up to equivalence of
germs of distributions), the contact distribution: in appropriate local coordinates x, y, y′, it is the
distribution defined by dy = y′dx. Since prolongation and deprolongation are inverse processes,
we conclude that D is found somewhere in the prolongation tower over this distribution, i.e., it
is equivalent to the germ of the prolongation of the contact distribution at some point in the
(k − 1)st space in this tower. As the contact distribution is equivalent to ∆(1) at any point of
S(1), this shows that D appears somewhere in the monster tower.

One could actually stop this process one step earlier, arriving at a Goursat germ whose rank
and corank are both 2. Again one knows that such a germ is unique: it is the Engel distribution,
given in local coordinates x, y, y′, y′′ by the vanishing of dy− y′dx and dy′− y′′dx. See Sections
6.2.2 and 6.11 of [16]. The Engel distribution is equivalent to ∆(2) at any point of S(2).

Alternatively, one can continue it by one additional step, but this step is different, since it is
not dictated by the Cauchy characteristic. Given the germ of the contact distribution, one can
deprolong in any direction tangent to this distribution, creating a surface whose tangent bundle
will prolong to the contact distribution. We illustrate this by two examples.
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Example 5. The coordinate names x, y, y′ naturally suggest that one should contract the
curves on which x and y are constant; on the resulting surface with coordinates x and y one
interprets y′ as dy/dx.

Example 6. Alternatively, let X = y′, let Y = y − y′x, and let Y ′ = −x. (To motivate this,
think of X and Y as “slope” and “intercept.”) Since dY = dy − y′dx − xdy′ and dy − y′dx
vanishes on the contact distribution, we see that in our new coordinates the contact distribution
is defined by the equation dY = Y ′dX. Thus one can equally well obtain a surface by contracting
the curves on which X and Y are constant, and its tangent bundle will likewise prolong to the
contact distribution.

Observe that, given a Goursat germ D of rank 2 and corank k, the process we have described
for finding a point pk on the monster space S(k) over a surface S is a recursive process. By
repeated deprolongation we first construct the surface S and a point p0; then by the prolongation
construction we build S(1) and a point p1 lying over p0, then S(2) and p2, etc.

What about Goursat distributions of rank greater than two? Given a nontrivial Goursat germ
D of rank d ≥ 3, Lemma 4 can be applied d − 2 times to obtain the beginning of a Lie square
sequence

E ⊂ E2 ⊂ · · · ⊂ Ed−1 = D,

where E is a rank 2 Goursat germ. As we have just observed, E can be obtained by repeated
prolongation of the (threefold) contact distribution. Letting j and k denote the coranks of D
and E respectively, we observe that k = j + d − 2; thus j + d − 3 steps of prolongation are
required. We conclude that any Goursat germ can be found within the monster tower over a
surface.

7. Focal curve germs

Throughout the remainder of the paper, we work in the monster tower over a smooth surface S.
We will be studying local invariants, and thus we are interested in a focal curve germ consisting
of a point p on some monster space S(k), together with a locally irreducible focal curve passing
through p; if necessary we will replace S(k) by a neighborhood of p. We say that the germ is
located at p or that p is its location. Note in particular that every irreducible curve germ on S
is automatically a focal curve germ.

A focal curve germ on S(k) may project to a single point of S. Such a germ is said to be
critical. We are using the terminology of Montgomery and Zhitomirskii [19, Definition 2.16], but
our definition differs slightly from theirs, since they do not apply the terminology to a curve in
S(1). This reflects a difference in viewpoint: they are studying Goursat distributions, whereas
we are equally focused on curves as objects of intrinsic interest. One can easily characterize a
critical germ: it is either the germ of a fiber of S(k) over S(k − 1), or the lift from some lower
level of such a germ. A tangent direction to a critical germ is also called critical.

If the focal curve germ C(k) located at p ∈ S(k) is not critical, then one may project it to
the base surface S, obtaining a curve germ C there, and then recover C(k) by repeated lifting
of C. (Note that this justifies the notation C(k).)

We say that C(k) is regular if it is nonsingular and if the tangent direction at p is not
critical. Starting with an arbitrary focal curve germ, we can lift it through the tower. If, after
a finite number of steps, we obtain a regular focal curve germ, then we say the original germ is
regularizable. Its regularization level r is the smallest value for which C(r) is regular. Note that
r ≥ k, with equality if and only if C(k) is regular. If r > k, then C(k+1) through C(r) all have
regularization level r.

A critical germ provides the basic example of a focal curve germ which is not regularizable.
There are, however, other nonregularizable germs: one can create a curve germ that agrees
with a critical germ to infinite order, i.e., that cannot be separated from the critical germ by
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any number of liftings. In [19, Theorem 2.36], the authors observe that one way to avoid such
curves is to assume that S has an analytic structure; they show that a noncritical analytic curve
is regularizable. We will take a slightly different approach, hypothesizing “regularizable” as
needed in our later results. We will give examples of the definitions in the next section, which
will introduce natural coordinate charts on the monster spaces.

Suppose that C(k) and C ′(k) are regularizable focal curve germs located, respectively, at
points p and p′ of S(k). A local diffeomorphism from S(k) to itself taking p to p′ is said to be
an equivalence of (regularizable) focal curve germs if it takes C(k) to C ′(k) and its derivative
preserves the focal distribution. An invariant of focal curve germs is a function on the set of
equivalence classes. Note that an equivalence of focal curve germs gives us (simply by forgetting
the curves) an equivalence of the Goursat germs at p and p′ of the focal distribution; thus every
focal curve germ invariant is a Goursat invariant.

We now make some further remarks about Goursat and focal curve germ invariants, without
giving full definitions of our terminology; see the beginning pages of [19] for a complete discussion.
By a theorem of Bäcklund [1], every equivalence of rank 2 Goursat germs is the prolongation of
an equivalence of Goursat germs of rank 2 and corank 1, which are contact distributions. Thus
the pseudogroup of equivalences of Goursat germs at a point is contained in the pseudogroup of
local contactomorphisms. In our Figure 1, the top three boxes are invariants for the action of
the smaller pseudogroup, while the bottom three boxes are invariants for the action of the larger
pseudogroup.

8. Coordinates on monster spaces

We now explain how to introduce coordinates on the monster spaces over a surface S, and
relate them to the coordinates previously employed in Lemma 3. Let x and y be coordinates
on a neighborhood U in S. On U(k) there are 2k charts, each of which is a copy of U × Ak,
the product of the base neighborhood U and k-dimensional affine space, and on each chart
there are k + 2 coordinate functions: the pullback of x and y from U , together with k affine
coordinates. At each level j, by a recursive procedure, two of these coordinates are designated
as active coordinates. One is the new coordinate nj , and the other is the retained coordinate rj .
In addition, for j > 0, a third coordinate is designated as the deactivated coordinate dj .

To describe the recursive procedure, we begin with a chart on U(j) with coordinates nj , rj ,
and dj together with j − 1 unnamed coordinates. At each point of the chart, the fiber of ∆(j)
(except for the zero vector) consists of tangent vectors for which either the restriction of the
differential dnj or that of drj is nonzero. Create a chart at the next level by choosing one of the
following two options:

• Assuming the restriction of drj is nonzero, let nj+1 = dnj/drj ; then set rj+1 = rj and
dj+1 = nj . We call this the ordinary choice.

• Assuming the restriction of dnj is nonzero, let nj+1 = drj/dnj ; then set rj+1 = nj and
dj+1 = rj . We call this the inverted choice.

To begin the process we always make an ordinary choice, but there are two possibilities. On U
the active coordinates are x and y, either of which may be designated as the retained coordinate
r0; the other coordinate is n0, and there is no deactivated coordinate. In every chart the names
of the coordinates are r0, n0, n1, . . . , nj , but their meaning depends on the chart.

The charts are given names such as C(oiiooi), where each symbol o or i records which choice
has been made, either ordinary or inverted.

Alternatively, we name all coordinates using superscripted x’s and y’s, as follows. We begin
with x(0) = x and y(0) = y. At each level, the two active coordinates will be x(i) and y(j), for
some nonnegative integers i and j. If we create our chart at the next level by designating x(i) as
the retained coordinate, then the new active coordinate is y(j+1) = dy(j)/dx(i); if we designate
y(j) as the retained coordinate, then the new active coordinate is x(i+1) = dx(i)/dy(j). This
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notation is meant to suggest the standard usage in calculus, where the superscript indicates a
number of prime marks: y(1) = y′, y(2) = y′′, etc. Note, however, that the meaning depends on
the choice of chart, e.g.,

• y′ means dy/dx if we begin by retaining x,
• y′ means dy/dx′ if we first retain y and then retain x′; this coordinate is first used at
level 2;

• y′ means dy/dx′′ if we retain y twice, then retain x′′, etc.

Calculating lifts of parameterized curves is straightforward from the definitions of the coor-
dinates, as we now illustrate.

Example 7. Beginning with the germ C parameterized by x = t5 and y = t7, we can calculate
the fifth lift C(5) as follows:

y′ = dy/dx = 7
5 t

2

x′ = dx/dy′ = 25
14 t

3

x′′ = dx′/dy′ = 375
196 t

y′′ = dy′/dx′′ = 2744
1875 t

y(3) = dy′′/dx′′ = 537824
703125 .

Note that we have chosen the chart C(oioio) on S(5) in which the germ actually appears; it
is located at p =

(
0, 0; 0, 0, 0, 0, 537824

703125

)
. We call this the associated curvilinear data point ; the

values following the semicolon record the data of orders 1 through 5. The third lift C(3) is
nonsingular but not regular; the regularization level of the beginning germ is 4.

Going in the opposite direction, one can begin with the parametric equations for the two
active coordinates x′′ and y(3) and integrate to obtain the other equations, supplying the required
constant values (which in this example happen to be zeros).

As the example illustrates, given a point p ∈ S(k) one can easily find focal curves passing
through it: simply write parametric expressions for the two active coordinates and then do
k appropriate integrations. This will always be successful, unless one has chosen a constant
parametric expression. In fact, we can choose these two expressions so that the resulting focal
curve germ C(k) is not critical; thus it projects to a curve germ on S (rather than a single point).
Even more, we can choose the expressions so that the resulting curve germ C(k) is regular.

Example 8. The curve C(3) of Example 7 — parameterized by x = t5, y = t7 and the first
three equations of the display — is not regular. To find a regular focal curve passing through
(0, 0; 0, 0, 0) ∈ S(3), one can instead begin with y′ = t and x′′ = t; integration yields the curve
on S parameterized by x = 1

6 t
3, y = 1

8 t
4.

To obtain, in a selected chart on S(k), a set of equations defining the focal bundle ∆(k)
within the tangent bundle TS(k), we observe that (5.2) tells us that we can repeat the equations
defining ∆(k− 1) within TS(k− 1), and we just need to adjoin a single equation. If, at the last
step, one has made the ordinary choice, then the additional equation is dnk−1 = nk drk−1; if
one has made the inverted choice, then the additional equation is drk−1 = nk dnk−1. These can
be written uniformly as

ddk = nk drk. (8.1)
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Example 9. For the chart C(oioii) of Example 7, the focal bundle is defined within TS(5) by

dy = y′ dx

dx = x′ dy′

dx′ = x′′ dy′

dy′ = y′′ dx′′

dy′′ = y(3) dx′′ .

The coordinates used in the charts of the monster spaces can readily be used to provide the
local coordinates described in Lemma 3 (which we subsequently used to explain the code words
of Goursat distributions), as we now explain.

Lemma 10. Working at a point p in a chart on the monster space S(k) with k ≥ 2, and
assuming 1 ≤ j ≤ k − 1, consider the bundles shown here:

∆(k)j ⊂ ∆(k)j+1

∪

L(∆(k)j) ⊂ L(∆(k)j+1)

The equations of these bundles inside ∆(k)j+1 are as follows:

ddk−j+1 = nk−j+1drk−j+1 ⊂

∪
drk−j+1 = 0
ddk−j+1 = 0
dnk−j+1 = 0

⊂ drk−j+1 = 0
ddk−j+1 = 0

(8.2)

Thus we may obtain appropriate Kumpera–Ruiz coordinates for Lemma 3 by letting
x = rk−j+1 − rk−j+1(p), y = dk−j+1 −dk−j+1(p), and y′ = nk−j+1 −nk−j+1(p), and letting the
constant of part 2 of that lemma be C = nk−j+1(p).

Proof. Equation (5.3) tells us that, for 2 ≤ j ≤ k − 1, the sheaves ∆(k)j are extensions from
lower levels. Thus it suffices to verify that the equations of 8.2 are correct when j = 1, i.e., that
the equations are as follows:

ddk = nkdrk ⊂

∪
drk = 0
ddk = 0
dnk = 0

⊂ drk = 0
ddk = 0

(8.3)

This is done by induction on k.
For k = 2 we are considering the bundle ∆(2). If the ordinary choice has been made, then

the identifications of variables are as follows:

r2 = x

d2 = y′

n2 = y′′.
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If the inverted choice has been made, then the identifications are

r2 = y′

d2 = x

n2 = x′.

For the inductive step, we claim that we have the following diagram of equations inside ∆(k)3
for the bundles ∆(k), ∆(k)2, and ∆(k)3 (in the top row) and the Cauchy characteristics L(∆(k)2)
and L(∆(k)3) (in the bottom row).

ddk−1 = nk−1drk−1

ddk = nkdrk
⊂ ddk−1 = nk−1drk−1 ⊂

∪ ∪
drk−1 = 0
ddk−1 = 0
dnk−1 = 0

⊂ drk−1 = 0
ddk−1 = 0

Except for the box at top left, this follows from the inductive hypothesis; in that box we have
adjoined the additional equation (8.1) defining ∆(k) inside ∆(k)2. Now erase the rightmost
boxes of each row. For the remaining three boxes, we obtain equations inside ∆(k)2 by omitting
the equation ddk−1 = nk−1drk−1 from the boxes of the top row, and using this equation to
simplify the set of equations in the bottom left box, i.e., by omitting ddk−1 = 0. There are now
two cases. If the ordinary choice has been made, then we replace rk−1 by rk and nk−1 by dk; if
the inverted choice has been made, then we replace rk−1 by dk and nk−1 by rk. In either case,
we obtain the right box of the bottom row of (8.3). The equations in the left box of this row are
a consequence of part 3 of Lemma 3.

The last statement of the lemma now follows from comparing diagrams (3.5) and (8.2).
□

Example 11. Using the chart C(oioio) on S(5) of Examples 7 and 9, here is diagram 8.3:

dy′′ = y(3)dx′′ ⊂

∪
dx′′ = 0
dy′′ = 0
dy(3) = 0

⊂ dx′′ = 0
dy′′ = 0

The bundle L(∆(5)) at lower left is the trivial (rank 0) bundle. For the point p located at(
x(p), y(p); y′(p), x′(p), x′′(p), y′′(p), y(3)(p)

)
,

we obtain local coordinates by subtracting each of these constants from the corresponding coor-
dinate: X := x − x(p), Y := y − y(p), Y ′ := y′ − y′(p), etc. Using these coordinates, L(∆(5)2)
is defined inside ∆(5)2 by

dX ′′ = dY ′′ = 0,

while the focal bundle ∆(5) is defined inside ∆(5)2 by the single equation

dY ′′ =
(
y(3)(p) + Y (3)

)
dX ′′.

Using this analysis to infer the last symbol in the code word associated with the focal bundle ∆
at point p (following the recipe of Section 3), we note that it depends on the location of p. If
y(3) = 0, the last symbol is T , and otherwise it is R.
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9. Divisors at infinity and their prolongations

As explained in Section 5, one constructs the monster tower over a surface by prolongation of
successive focal bundles: the monster space S(j) is obtained by applying the general prolongation
construction of Section 4 to the bundle ∆(j − 1) on S(j − 1). For j ≥ 2, the rank 2 bundle
∆(j − 1) contains the line bundle T (S(j − 1)/S(j − 2)) of vertical vectors. If one applies the
general prolongation construction to this line bundle, one obtains a tower of spaces

· · · → Ij [3] → Ij [2] → Ij [1] → Ij → S(j − 1)

over S(j − 1); since we started with a line bundle, each of these spaces is simply a copy of
S(j − 1). Each of these spaces naturally fits inside its counterpart in the monster tower. Thus
Ij is a divisor on S(j), while Ij [1] is a submanifold of codimension 2 on S(j + 1), etc. We call
Ij the jth divisor at infinity and Ij [ℓ] its ℓth prolongation. (For a generalization, see [6].)

What is the geometric meaning of these loci? Using either our interpretation of the coordinate
systems, or reflecting upon how the lift of a curve could possibly have a vertical tangent, we
realize that the divisor at infinity Ij consists of those curvilinear data points for which we consider
the jth-order data to be infinite.

Example 12. For the ramphoid cusp of Figure 3, its lift to S(2) is given by

x = t2

y = t4 + t5

y′ = 2t2 + 5
2 t

3

y′′ = 2 + 15
4 t.

Observe that this lift is tangent to the fiber of S(2) over S(1). We can compute

y′′′ =
dy′′

dx
=

15

8t

but of course we can’t evaluate this at t = 0; that’s because the third lift intersects I3. To see
the intersection we instead should compute

x′ =
dx

dy′′
=

8

15
t .

In this chart the divisor at infinity I3 is x′ = 0.

y = x2

(y – x2)2 = x5

y

x
–1

1

1

Figure 3. A ramphoid cusp.
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In general one obtains the divisor at infinity Ij by making the inverted choice in going from
level j − 1 to level j. In the resulting chart, Ij is given by the vanishing of the new coordinate
nj . To obtain the prolongations Ij [ℓ], one continues by making ℓ ordinary choices, and Ij [ℓ] is
given by the additional vanishing of nj+1 through nj+ℓ.

To compare all these divisors at infinity and their prolongations, let’s pull everything back to
a chosen level k. The complete inverse image of Ij will be denoted in the same way, but now it’s
a divisor up on S(k). With this convention, we now have a nest

Ij ⊃ Ij [1] ⊃ Ij [2] ⊃ · · · ⊃ Ij [k − j].

Lemma 13. Working at a point p ∈ S(k), where k ≥ 2, consider the focal bundle ∆(k). Let
3 ≤ j ≤ k. The loci N(V )j and N(V T τ )j from (3.6) and (3.9) are the divisor at infinity Ij and
the prolongation Ij−τ [τ ].

Proof. This is immediate from the identification of Goursat and monster coordinates given in
Lemma 10. □

10. Code words redux

In Section 3 we have associated code words with Goursat distributions. We now associate
similar code words with points on the monster spaces over a surface S, and to focal curve germs
on these spaces. We also discuss how these code words are related to each other.

We define an RVT code word to be a finite word in these three symbols, satisfying the following
rules:

(1) The first symbol is R.
(2) The symbol T may only be used immediately following a V or T .

For the Goursat words of Section 3, by contrast, the first two symbols are required to be RR.
Given an RVT code wordW , we associate with it a Goursat wordG(W ) by this simple procedure:
if there is a V in second position, then replace it and any immediately succeeding T ’s by R’s.
For example, if W is RV TTTV RV T then G(W ) is RRRRRV RV T .

10.1. Code words of points. Given a point p ∈ S(k), the kth monster space over a surface
S, we associate with it an RVT code word of length k by considering where it lies with respect
to the divisors at infinity and their prolongations. Since the divisors at infinity arise beginning
at level 2, the first symbol in the code word is an automatic R. Here are the rules for assigning
the symbol in position j:

(1) If p lies on the jth divisor at infinity Ij , then the jth symbol is V .
(2) If p lies on the prolongation Ih[ℓ], where ℓ > 0 and h+ ℓ = j, then the jth symbol is T .
(3) Otherwise the jth symbol is R.

Rules 1 and 2 appear to clash, but in fact it’s impossible for p to lie on both Ij and Ih[ℓ]. To
see this, we consider assigning the symbols one step at a time, beginning after the automatic R;
we look at the sequence of points going up the tower to our specified point on S(k). At each
step, we are considering a fiber of S(j + 1) over a point p ∈ S(j), a projective line. Let q be a
point on the fiber of S(j + 1) over p. One point on the fiber is the intersection with the divisor
at infinity Ij+1; if q is this point, then the new symbol is V . If p lies on Ij or some Ih[ℓ], there is
a second special point on the fiber, the intersection with the prolongation Ij [1] or Ih[ℓ+1]; if q is
this point, then the new symbol is T . These two special points are distinct. This description also
makes it clear that the code word associated with a point satisfies rule 2 for RVT code words.

Example 14. For the point p of Example 7 the associated RVT code word is RV TV R; for the
origin of the chart C(oioio) used there, the RVT code word is RV TV T .
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10.2. Code words of focal curve germs. To obtain the RVT code word of a regularizable
focal curve germ C(k) on S(k), lift it upward through the monster tower until you reach the
regularization level r. The RVT code word records how the successive lifts meet the divisors at
infinity Ik+2 through Ir, with a V indicating that we are on the divisor at infinity, a T indicating
that we are on the prolongation of a divisor at infinity, and R being used otherwise. Also use an
R in the first position, i.e., ignore the divisor at infinity Ik+1 and its prolongations, as well as
those of the prior divisors at infinity I2 through Ik. To explain the process in a slightly different
two-step way:

(1) Record how the curve and its lifts meet the divisors at infinity Ik+1 through Ir and their
prolongations.

(2) If the resulting word begins with V T τ , replace this string by Rτ+1.

The first step of this process produces a word ending with a critical symbol V or T , but this
symbol may be changed to R in the second step. As a special case, we associate a code word
with a curve C on a surface S. Here there is no divisor at infinity on S(1), so that the initial
R is automatic (unless the germ is nonsingular, in which case the word is empty), and the final
symbol will definitely be critical.

Example 15. For the curve germ C of Example 7 (whose regularization level is 4), the associated
RVT code word is RV TV ; for C(1) through C(4), each of which also has regularization level
4, the associated code words are RRV , RV , R, and the empty word. The fifth lift C(5) has
regularization level 5 and its code word is likewise empty.

The reason we make this construction for focal curve germs, rather than just curves on
surfaces, is that it gives us the flexibility to calculate other invariants recursively. For example,
it is used in the subsequent Section 12 to develop a front-end recursion for Puiseux characteristics.

By definition, all of our code words thus far are finite. For later usage, however, it is convenient
to associate a code word of infinite length with a focal curve germ, simply by padding out with
an infinite string of R’s. None of the invariants considered in this paper is altered when one
appends R’s to the end of a code word; thus it makes sense to speak of the invariants associated
with such infinite words. For example, PC(RV V RRR . . . ) = PC(RV V ) = [3; 5].

One could assign a code word to a nonregularizable focal curve germ, but such a word would
be of infinite length and would contain an infinite string of T ’s; we will not develop a theory of
these words.

10.3. Words of points vs. words of Goursat germs. Recall that in Section 3 we associated
a Goursat word with any Goursat distribution at a point.

Theorem 16. Working at a point p ∈ S(k), consider the focal bundle ∆(k). The Goursat word
associated with ∆(k) at p is G(W ), where W is the RVT code word associated with p.

Proof. We compare the rules for computing the Goursat word of ∆(k) at p with the rules for
computing G(W ), where W is the RVT code word associated with p. Because of the recursive
nature of both sets of rules, it suffices to show that they give the same result in the final position.

Lemma 13 and (3.6) tell us that, for k ≥ 3,

Dk(p) = L(Dk+2)(p) ⇐⇒ p ∈ Ik.

Thus the rules for whether to use a V in the final position of the code word agree. Now suppose
k ≥ τ + 3, where τ ≥ 1, and that π(p) ∈ N(V T τ−1)k, where π : S(k) → S(k − 1) is projection.
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Then, again using Lemma 13 and (3.9),

the Goursat word of ∆(k) at p has final symbol T

⇐⇒ p ∈ N(V T τ )k

⇐⇒ p ∈ Ik−τ [τ ]

⇐⇒ the RVT code word of p has final symbol T .

In all other situations, both sets of rules dictate a final symbol R. □

As we have explained in Section 6, the process of finding a point pk ∈ S(k) representing a given
Goursat distribution can be interpreted as finding a sequence of points p1 ∈ S(1), p2 ∈ S(2), etc.
Since all points of S(2) represent the same Goursat distribution, we may choose p2 wherever we
like. In particular we may choose a point p2 not lying on the divisor at infinity I2; in this case
the RVT code word is already a Goursat word.

10.4. Words of points vs. words of focal curves. Suppose that C(k) is a regularizable focal
curve germ located at a point p ∈ S(k). The RVT code word of p and the RVT code word of C(k)
record complementary information. Let C be the curve germ on S obtained by projecting C(k).
Then the RVT code word of p records the sequence of divisors at infinity and prolongations of
such divisors one encounters when lifting C through the tower to recover C(k); it is a word of
length k. The RVT code word of the germ C(k) records the divisors at infinity and prolongations
that one encounters as one continues to lift C(k) until one reaches the regularization level r; it
is a word of length r − k.

Example 17. Consider this focal curve germ C(2) located at the origin of chart C(oi):

x = t14

y = 14(t18 + t19)

y′ = t4(18 + 19t)

x′ =
14t10

72 + 95t

The code word of p = (0, 0; 0, 0) is RV . The regularization level is 7, and the code word of of
C(2) is RRVRV . Compare these code words with the code word of C:

RV |TTVRV

We have inserted a vertical slash to indicate how one can recover the words of p and C(2); to
obtain a valid RVT code word, one needs to replace the initial two T ’s by R’s.

For a curve germ C on S, its code word is the same as the word of the location of C(r) on
S(r). More generally, as the example illustrates, one can find the code word of C(k) on S(k) by
finding the code word of the location of C(r), lopping off the first k symbols, and then replacing
V ’s and T ’s as necessary to obtain a valid RVT code word.

Example 18. In Example 17, the location of C(7) in chart C(oiooioi) is

(0, 0; 0, 0, 0, 0, 0, 8707129344
1225 , 0)

and the code word of this point is RVTTVRV .

Going in the other direction, given a point p ∈ S(k) we can find a regular curve germ C in S
whose kth lift passes through p; one simply specifies appropriate parameterizations of the two
active coordinates and obtains the other parametric equations by integration. The code word of
C is then the same as the code word of p.
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10.5. The lifted word. Suppose that W is the RVT code word associated with a regularizable
focal curve germ C(k) on S(k). The code word of its lift C(k + 1) is the lifted word L(W )
obtained from W by this recipe:

• Remove the first symbol R.
• If the new first symbol is V , replace it by R, and likewise replace any immediately
succeeding T ’s by R’s. Stop when you reach the next R, the next V , or the end of the
word.

Observe that this lifting procedure also applies to an infinite word.

Example 19. If W is RVTTVRVRV , then L(W ) is RRRVRVRV .

Going in the opposite direction, assume that we know L(W ) and want to know the possibilities
for W . There is a choice in the first step:

(1) Any string Rτ at the beginning of L(W ) can be replaced by V T τ−1. The choice τ = 0
is allowed; this means don’t make a replacement at all.

(2) Put the symbol R at the beginning.

Example 20. If L(W ) is RRRVRVRV , then there are four possibilities for W :

RRRRVRVRV

RVRRVRVRV

RVTRVRVRV

RVTTVRVRV

11. Comparison with embedded resolution

As noted in the Introduction, singularity theorists working in the context of algebraic geometry
tend to work with point blowups of varieties rather than Nash modifications. The ideas and
calculations of earlier sections have counterparts in this context, which we now briefly explain.
For a related treatment, see [17], especially Sections 9 and 14.

If we begin, as in Section 8, with coordinates x = x0 and y = y0 on a neighborhood U on
the surface S which contains point p, then we may define blowup coordinates on the kth blowup
S{k} of S in a recursive manner: the new coordinate is either

yj+1 = (yj − yj(pk−1))/(xi − xi(pk−1))

or

xi+1 = (xi − xi(pk−1))/(yj − yj(pk−1)).

where pk−1 denotes a point of S{k − 1} in the fiber over p. The sequence of points and the
choice of which of the two formulas to use is dictated by the curve on S which one is studying.
Note the contrast with the monster construction, which is carried out in a uniform manner, no
matter what curve is eventually to be studied.

Example 21. Working with the curve C parameterized by x = t5, y = t7, the blowup coordinate
calculation over the origin analogous to that of Example 7 is

y1 = y/x = t2

x1 = x/y1 = t3

x2 = x1/y1 = t

y2 = y1/x2 = t

y3 = y2/x2 = 1 .

From this we see that the strict transform C3 ⊂ S{3} is nonsingular.
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In the context of embedded resolution, the symbols of the RVT code of Subsection 10.2 have
the following meanings:

• The first symbol is automatically R.
• The symbol in position j is V if the strict transform Cj meets the strict transform of

the exceptional divisor Ej−1.
• The symbol in position j is T if Cj meets the strict transform of some earlier exceptional
divisor Ei (with i < j − 1). This will necessarily be the same exceptional divisor that it
met at the prior level.

• The symbol in position j is R if Cj meets only the newest exceptional divisor Ej .

We say that the strict transform Cj is regular if it is nonsingular and if it transverse to all
the exceptional divisors that it meets. The regularity level is the lowest level at which these
conditions are met; this definition agrees with that of Section 7.

12. Puiseux characteristics

12.1. The Puiseux characteristic of a focal curve germ. The Puiseux characteristic is a
well-known invariant of a curve germ on a surface S, but we wish to extend it to a broader
context and relate it to the RVT code. Let p be a point on S(k) and let C(k) be a regularizable
focal curve germ located at p. Choose an ordered pair (X,Y ) of coordinate functions vanishing
at p, such that

• the differentials dX and dY are independent linear functionals on the focal plane at p,
and

• X has the smallest possible order of vanishing.

Denoting this order by n, introduce a parameter t for which X = tn. Then Y may be expressed
as a formal power series

Y =
∑

ait
i (12.1)

where we write just those terms for which ai ̸= 0. (To say this another way, we write Y as a frac-
tional power series Y =

∑
aiX

i/n.) An exponent in this series is called essential or characteristic
if it is not divisible by the greatest common divisor of the smaller exponents. In this definition
we count n as an essential exponent; thus the first essential exponent appearing in (12.1) is the
first exponent (if any) not divisible by n. The set of essential exponents {n, λ1, . . . , λg} is finite
and their greatest common divisor is 1. Letting λ0 = n, we define the Puiseux characteristic to
be

[λ0;λ1, . . . , λg].

For example, for the focal curve C parameterized by

x = s4

y = s6 + s7

y′ = 3
2s

2 + 7
4s

3

we may take our first coordinate function to be y′ and thus use parameter t = s
√

3
2 + 7

4s. For

second coordinate we may use x, whose expansion in the new parameter is

x = 4
9 t

4 − 28
√
6

81 t5 + · · ·

the first term being inessential. The Puiseux characteristic is [2; 5]. Observe that y may not be
used as our second coordinate function, since dy = y′dx = 0 on the focal plane at p.
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12.2. The front-end recursion for Puiseux characteristic. In what follows, we show that
the RVT code word associated with a regularizable focal curve determines its Puiseux charac-
teristic. As we will see, the Puiseux characteristic can be computed by either of two recursions:

(1) A front-end recursion whose step size is a single symbol of the word.
(2) A back-end recursion whose step size is a block of symbols.

Here we state the front-end recursion and prove that it is valid, i.e., that it correctly computes the
Puiseux characteristic of each focal curve. Subsequently we will describe the back-end recursion
and prove that it is a consequence of the front-end recursion; thus it is likewise valid.

The front-end recursion uses the notion of the lifted word L(W ) of an RVT code word W , as
defined in Section 10.

Theorem 22. Suppose that C(k) is a regularizable focal curve germ located at a point p on
S(k). Its associated code word W determines its Puiseux characteristic. If W has no critical
symbols, then the associated Puiseux characteristic, denoted PC(W ), is [1; ]. In general the
Puiseux characteristic is determined recursively by the following rules. Suppose that

PC(W ) = [λ0;λ1, . . . , λg].

(A) The word W begins with RR if and only if λ1 > 2λ0. In this case, PC(L(W )) is obtained
from PC(W ) by keeping λ0 and subtracting it from all other entries:

PC(L(W )) = [λ0;λ1 − λ0, . . . , λg − λ0].

(B) The word W begins with RV T τR or is W = RV T τ if and only if

λ0 = (τ + 2)(λ1 − λ0) and λ1 = (τ + 3)(λ1 − λ0).

In this case

PC(L(W )) = [λ1 − λ0;λ2 − (λ1 − λ0), . . . , λg − (λ1 − λ0)].

(Note that this Puiseux characteristic is shorter.)
(C) The word W begins with RV T τV if and only if

(τ + 1)(λ1 − λ0) < λ0 < (τ + 2)(λ1 − λ0).

In this case

PC(L(W )) = [λ1 − λ0;λ0, λ2 − (λ1 − λ0), . . . , λg − (λ1 − λ0)].

Example 23. The Puiseux characteristics associated with the four words of Example 20 are

PC(RRRRVRVRV ) = [8; 36, 38, 39]

PC(RVRRVRVRV ) = [16; 24, 36, 38, 39]

PC(RVTRVRVRV ) = [24; 32, 36, 38, 39]

PC(RVTTVRVRV ) = [28; 36, 38, 39]

The first word is covered by Theorem 22(A), the next two by (B), and the last word by (C). In
each case L(W ) is RRRVRVRV , so that PC(L(W )) = [8; 28, 30, 31].

The formulas of Theorem 22 already appear in Theorem 3.5.5 of Wall’s textbook [24], but we
remark that the circumstances are different in several ways: Wall’s formulas apply to a curve on
a surface, a special case of a focal curve; they are obtained using blowups rather than lifts (i.e.,
Nash modifications); and he doesn’t invoke RVT code words. Nevertheless our proof is similar.
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Proof. Let X and Y be chosen in accordance with our definition of Puiseux characteristic:

X = tλ0

Y =
∑

ait
i.

We may choose Y so that the first term in its series is aλ1
tλ1 . For the lifted curve we have

available a new coordinate function .

Y ′ = dy/dx =
∑ i

λ0
ait

i−λ0 .

If λ1 > 2λ0, then X continues to have the lowest order of vanishing; thus (X,Y ′) is an
appropriate pair of coordinate functions for computing the Puiseux characteristic of the lifted
curve, and we obtain the formula of (A). The next stage in lifting involves Y ′′ = dY/dX, so that
the code word begins with RR.

If λ1 < 2λ0, then λ1 − λ0 < λ0 and we can use (Y ′, X) as an appropriate ordered pair

of coordinate functions. Let [λ̃0; λ̃1, . . .] be the Puiseux characteristic of the lifted curve; we

observe that λ̃0 = λ1 − λ0. To compute the other characteristic exponents we need to invert
the fractional power series for Y ′. The formulas for this inversion are well known: we apply [5,

Proposition 5.6.1], replacing Casas-Alvero’s [n;m1, . . . ] by [λ1 − λ0; λ̃1, . . . ] and his [n;m1, . . . ]
by [λ0;λ1 − λ0, . . . ]. The proposition tells us that there are two mutually exclusive possibilities:

• The leading characteristic exponent λ1 − λ0 divides λ0, and the other characteristic
exponents are determined by

(λi+1 − λ0) + λ0 = λ̃i + (λ1 − λ0).

• The first two characteristic exponents are λ1 − λ0 and λ̃1 = λ0; the remaining charac-
teristic exponents are determined by

(λi − λ0) + λ0 = λ̃i + (λ1 − λ0).

These two possibilities lead to the formulas for PC(L(W )) of (B) and (C).
In order to compute the associated code word, we examine the successive derivatives X ′, X ′′,

X(3), . . . of X with respect to Y ′. The order of vanishing in t of X(i) is (i+ 1)λ0 − iλ1. In case
(B), let τ be the nonnegative integer for which λ0 = (τ + 2)(λ1 − λ0). In this case the order of
vanishing of X(i) is (τ +2− i)(λ1−λ0), which is positive when i < τ +2 and becomes zero when
i = τ + 2. Thus when we evaluate at t = 0 we obtain 0 for the first τ + 1 derivatives, whereas
X(τ+2) has a nonzero value. Thus the code word begins with RV T τ ; if this is not the entire
word then the next symbol is R. Similarly, in case (C) we let τ be such that

(τ + 1)(λ1 − λ0) < λ0 < (τ + 2)(λ1 − λ0),

and observe that the first τ + 1 derivatives evaluate to 0. The next derivative X(τ+2) becomes
infinite at t = 0, which means that the associated symbol is V . Thus the code word begins with
RV T τV . □

Here we restate the recipes of Theorem 22 in a manner better suited for straightforward
calculation.

Theorem 24. Suppose that the Puiseux characteristic of L(W ) is

PC(L(W )) = [λ0;λ1, . . . , λg].

(A) If W begins with RR, then PC(W ) = [λ0;λ1 + λ0, . . . , λg + λ0].
(B) If W begins with RV T τR or if W = RV T τ , then

PC(W ) = [(τ + 2)λ0; (τ + 3)λ0, λ1 + λ0, . . . , λg + λ0].

(This is a longer Puiseux characteristic.)
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(C) If W begins with RV T τV , then PC(W ) = [λ1;λ1 + λ0, . . . , λg + λ0].

Example 25. Let W = RRV TRRRV TTTV . To compute the Puiseux characteristic using the
front-end recursion, we start with

PC(R) = [1; ].

Theorem 24(B) with τ = 0 gives
PC(RV ) = [2; 3].

Then using Theorem 24(A) three times gives

PC(RRRRV ) = [2; 9].

Theorem 24(C) gives
PC(RV TTTV ) = [9; 11].

Using Theorem 24(A) four times gives

PC(RRRRRV TTTV ) = [9; 47].

Then Theorem 24(B) with τ = 1 gives

PC(RV TRRRV TTTV ) = [27; 36, 56].

Finally, Theorem 24(A) gives

PC(RRV TRRRV TTTV ) = [27; 63, 83].

12.3. The back-end recursion for Puiseux characteristic. We now turn to the back-end
recursion. This is similar to what is found in [19, Section 3.8] and [22], but our circumstances
are slightly broader and the details of our recursion are slightly different. A contiguous substring
in an RVT code word is called critical if the last symbol is V or T ; we call it entirely critical if
each of its symbols is V or T (i.e., if it contains no R’s). Appending an R to the end of a code
word doesn’t change the associated Puiseux characteristic, and for a word consisting entirely of
R’s (including the empty word) the associated Puiseux characteristic is [1; ]. Thus the back-end
recursion deals with critical words.

We first define two auxiliary functions ET and EV acting on ordered pairs of positive integers:

ET [a; b] = [a; a+ b]

EV [a; b] = [b; a+ b].

We recursively define a function E from entirely critical strings to ordered pairs of positive
integers:

E(empty string) = [1; 2]

E(TQ) = ET (E(Q))

E(V Q) = EV (E(Q)).

(In these formulas Q denotes an entirely critical string, possibly empty.) In fact, we can extend
it to strings of the form RρQ, where Q is entirely critical, by defining ER[a; b] = [a; a + b] (so
that ER is the same as ET ) and

E(RQ) = ER(E(Q)).

For example,
E(R4V 2) = ER ◦ ER ◦ ER ◦ ER ◦ EV ◦ EV [1; 2] = [3; 17].

Theorem 26. The Puiseux characteristic of a critical RVT code word is determined as follows.
Write the code word W as PRρQ, where P is either empty or critical, ρ ≥ 1, and Q is entirely
critical. (Note that the substring Q must begin with a V , since we want W to be a valid code
word.) Suppose that

PC(P ) = [λ0;λ1, . . . , λg] and

E(RρQ) = [a; b].
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Then

PC(W ) = [aλ0; aλ1, . . . , aλg, aλg + b− 2a].

If W = RρQ, i.e., if P is the empty word, then (applying our rules with g = 0) we have

PC(P ) = [1; ] and PC(W ) = [a; b− a].

In other words, the back-end recursion tells us that

PC(RρQ) = E(Rρ−1Q). (12.2)

Within this recursion, the subroutine of computing the function E is a front-end recursion. In
fact it’s essentially a special case of the front-end recursion of Theorem 24. Indeed, we can prove
formula (12.2) by induction on the length of the word. To begin, we remark that for a word
with a single V we have agreement:

PC(RρV T τ ) = [τ + 2; ρ(τ + 2) + 1]

E(Rρ−1V T τ ) = [τ + 2; ρ(τ + 2) + 1].

Thus in the inductive step it suffices to consider a word W = RρV T τQ′, where Q′ begins with
a V . Let PC(L(W )) = [λ0;λ1]. There are two cases to consider:

• If ρ ≥ 2, then by the inductive hypothesis

PC(Rρ−1V T τQ′) = E(Rρ−2V T τQ′) = [λ0;λ1].

According to Theorem 24(A),

PC(RρV T τQ′) = [λ0;λ1 + λ0],

in agreement with

E(Rρ−1V T τQ′) = ER(E(Rρ−2V T τQ′)) = [λ0;λ1 + λ0].

• If ρ = 1, then by the inductive hypothesis

PC(Rτ+1Q′) = E(RτQ′) = [λ0;λ1].

According to Theorem 24(C),

PC(RV T τQ′) = [λ1;λ1 + λ0],

in agreement with

E(V T τQ′) = EV (T
τQ′)) = EV (R

τQ′) = [λ1;λ1 + λ0].

Example 27. As in Example 25, let W = RRV TRRRV TTTV . To compute its Puiseux
characteristic using the back-end recursion, we start by using formula (12.2):

PC(RRV T ) = E(RV T ) = [3; 7].

Now compute E(RRRV TTTV ) = [9; 38], so that Theorem 26 gives

PC(RRV TRRRV TTTV ) = [9 · 3; 9 · 7, 9 · 7 + 38− 2 · 9] = [27; 63, 83].

Proof of Theorem 26. To prove the formula for PC(W ), we use induction on the length of W .
For a word with a single entirely critical block, we have already confirmed formula (12.2). Thus
in the inductive step it suffices to consider a word W = PRρQ, where P is critical, ρ ≥ 1, and
Q is entirely critical. We remark that the lifted word is

L(W ) = L(P )RρQ.

Let PC(L(P )) = [λ0;λ1, . . . , λg] and E(RρQ) = [a; b]. By the inductive hypothesis we know that

PC(L(W )) = [aλ0; aλ1, . . . , aλg, aλg + b− 2a].

We now consider the three cases of Theorem 24:
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(A) If P begins with RR, then 24(A) tells us that

PC(P ) = [λ0;λ1 + λ0, . . . , λg + λ0]

PC(W ) = [aλ0; aλ1 + aλ0, . . . , aλg + aλ0, aλg + b− 2a+ aλ0]

= [aλ0; a(λ1 + λ0), . . . , a(λg + λ0), a(λg + λ0) + b− 2a].

(B) If P begins with RV T τR or if P = RV T τ , then 24(B) tells us that

PC(P ) = [(τ + 2)λ0; (τ + 3)λ0, λ1 + λ0, . . . , λg + λ0]

PC(W ) = [(τ + 2)aλ0; (τ + 3)aλ0,

aλ1 + aλ0, . . . , aλg + aλ0, aλg + b− 2a+ aλ0]

= [a(τ + 2)λ0; a(τ + 3)λ0,

a(λ1 + λ0), . . . , a(λg + λ0), a(λg + λ0) + b− 2a].

(C) If P begins with RV T τV , then 24(C) tells us that

PC(P ) = [λ1;λ1 + λ0, . . . , λg + λ0]

PC(W ) = [aλ1; aλ1 + aλ0, . . . , aλg + aλ0, aλg + b− 2a+ aλ0]

= [aλ1; a(λ1 + λ0), . . . , a(λg + λ0), a(λg + λ0) + b− 2a].

□

12.4. From Puiseux characteristic to code word. The Puiseux characteristic and the RVT
code word are equivalent pieces of information. Having obtained two recursive recipes for com-
puting the Puiseux characteristic from a given code word, we now explain how to reverse these
recipes.

In the case of front-end recursion, the reversed recipe can be inferred from the cases of Theorem
22. We illustrate the process by an example.

Example 28. Suppose that PC(W ) = [10; 15, 27]. This puts us in case (B) of Theorem 22 with
τ = 0; thus W begins with RVR and PC(L(W )) = [5; 22]. Invoking case (A) three times, we
learn that L(W ), L2(W ), and L3(W ) all begin with RR, so that

W = RVRRR . . .

and PC(L4(W )) = [5; 7]. Using case (C) with τ = 1, we find that L4(W ) begins with RV TV
and that PC(L5(W )) = [2; 5]. By case (A), L5(W ) begins with RR (but this is redundant
information) and PC(L6(W )) = [2; 3]. Finally we use case (B) with τ = 0 to infer that L6(W )
begins with RVR. Thus

W = RVRRRVTVR.

For the back-end recursion, the reverse recipe is essentially what is explained in [19, Section
3.8.4] and in [22, Section 2.4], although there the circumstances are slightly different. We denote
the map from Puiseux characteristics to critical RVT code words by CW. We first describe an
auxiliary map which we denote by Euc; given a pair (a, b) of relatively prime positive integers
with a < b, it produces a string of V ’s and T ’s. We define Euc(1, 2) to be the empty word.
Otherwise we recursively define

Euc(a, b) =

{
V followed by Euc(b− a, a) if b < 2a,

T followed by Euc(a, b− a) if b > 2a.

For example,

Euc(2, 7) = T Euc(2, 5) = TT Euc(2, 3) = TTV.

And here is an example using Fibonacci numbers: Euc(Fk+2, Fk+3) = V k.
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We now describe the CW map. First suppose that the Puiseux characteristic is simply [λ0;λ1].
To obtain CW[λ0;λ1], first compute Euc(λ0, λ1), then replace the initial string of T ’s (if any)
by the same-length string of R’s and put a single R in front. For example, CW[2; 7] = RRRV .
For a longer Puiseux characteristic [λ0;λ1, . . . , λk+1], let

a = GCD(λ0, λ1, . . . , λk),

s =

⌊
λk+1 − λk

a

⌋
+ 1,

b = a

(
frac

(
λk+1 − λk

a

)
+ 1

)
(using the floor function and the fractional-part function as indicated). Then inductively define

CW[λ0;λ1, . . . , λk+1] = CW

[
λ0

a
;
λ1

a
, . . . ,

λk

a

]
Rs Euc(a, b).

For example,

CW[4; 6, 7] = CW[2; 3]REuc(2, 3) = RVRV

(since a = 2, s = 1, and b = 3).

12.5. The Puiseux characteristics of points and Goursat germs. Given a point pk ∈ S(k),
we associate with it a well-defined Puiseux characteristic, namely the Puiseux characteristic
associated with any regular focal curve germ passing through pk. Similarly, given a Goursat
germ of corank k, recall from Section 10.3 that we can choose a representative point on S(k)
that avoids the second divisor at infinity I2. All such points have the same associated Puiseux
characteristic. Thus we may speak of the Puiseux characteristic of a Goursat germ. This is a
restricted Puiseux characteristic, meaning that it satisfies the inequality λ1 > 2λ0. If instead we
had chosen a point lying on I2, to obtain the restricted Puiseux characteristic we would need to
replace λ0 by the remainder obtained by dividing λ1 by λ0.

The version in [19] and [22] of the algorithm for obtaining the Puiseux characteristic is applied
to code words in which the first symbol is at level 3. In comparison with our algorithm, here’s
how it works: first put RR at the beginning, thus obtaining a Goursat word, and then apply
our algorithm. Note that this yields a restricted Puiseux characteristic. For the algorithm in
the opposite direction, begin with a restricted Puiseux characteristic. If we apply our CW map,
we obtain a code word beginning with RR; the algorithm in [19] and [22] jettisons these initial
symbols.

13. The multiplicity sequence

One of the standard invariants in the theory of curves on surfaces is the multiplicity sequence,
as explained, e.g., in Section 3.5 of [24]. The usual definition employs embedded resolution of
singularities, whereas for present purposes we want to use lifting into the monster tower; the
two definitions give identical sequences. We also want to generalize the situation, by defining
the multiplicity sequence associated with any regularizable focal curve germ.

Consider a regularizable focal curve germ C(k) located at point pk on the monster space
S(k). For j ≥ k, the symbol mj denotes the multiplicity of C(j) at its location pj on S(j). The
multiplicity sequence of C(k) is the sequence mk,mk+1,mk+2, . . . . Note that mj is the leading
entry of the Puiseux characteristic PC(Lj−k(W )), where W is the associated infinite code word
of Section 10.2. One can regard each multiplicity as being associated with a symbol of the word,
except for the leading multiplicity mk, as indicated in Figure 4. (The edges will be explained
momentarily.) This infinite code word ends in an infinite string of R’s, for which each of the
associated multiplicities is 1.
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Our recursion for computing the Puiseux characteristics of lifted curves yields a recursion for
computing the multiplicity sequence from the code word.

Example 29. For the word W = RVTVVRRR . . . , the Puiseux characteristics are as follows:

PC(RV TV V ) = [8; 11]

PC(RRV V ) = [3; 8]

PC(RV V ) = [3; 5]

PC(RV ) = [2; 3]

PC(R) = [1; ]

PC() = [1; ]

Thus the multiplicity sequence is 8, 3, 3, 2, 1, 1, 1, . . . .

An alternative recursion uses the proximity diagram. Since our situation is different from
that of Wall [24], we cannot simply cite his definitions, but eventually we will obtain a formula
identical to that of his Proposition 3.5.1(iii). Here are our definitions. Looking at the sequence
of points pk, pk+1, pk+2, etc., we say that pj is proximate to pi if either j = i+ 1, or pj lies on
the prolongation of the divisor at infinity Ii+2, where i ≥ k. The proximity diagram represents
each point of the sequence by a vertex, with edges recording proximity; we furthermore record
the code word, as in Figure 4 (taken from page 52 of [24] and modified). The diagram continues
to the right indefinitely, but the essential information is visible in that portion to the left of the
last critical symbol.

R

8 3 3

V

2 1 1 1

VVT R

Figure 4. A proximity diagram.

We observe that the code word determines the diagram. The edges between successive vertices
are automatic. The other edges are determined in the following way: for each substring V T τ ,
let i be the position of the vertex corresponding to the V , and draw edges from each vertex of
the substring to the vertex in position i − 2. The multiplicities to the right of the last critical
symbol are 1’s.

Theorem 30. The multiplicity mi is given by
∑

mj, summing over all j for which pj is proxi-
mate to pi.

Proof. We prove this by induction on the length of the code wordW . In the inductive step we use
the three cases of Theorems 22 and 24. Let the Puiseux characteristic of L(W ) be [λ0;λ1, . . . , λg].
In case (A) the word begins with RR; thus in the proximity diagram the leftmost vertex is
connected only to its neighbor to the right. Theorem 24(A) tells us that the multiplicities of
these two vertices are both λ0. In case (B), the leftmost portion of the proximity diagram is as
shown in Figure 5. There the inductive hypothesis has been used to infer that all the indicated
multiplicities are the same. Theorem 24(B) tells us that the multiplicity at the left vertex is
(τ + 2)λ0, in accord with the formula of Theorem 30. In case (C), Theorem 24(C) tells us that
the leftmost multiplicity is λ1. Thus the inductive hypothesis tells us that the leftmost portion
of the proximity diagram is as shown in Figure 6. By Theorem 22(A) we infer that

PC(Li(W )) = PC(RτV · · · ) = [λ0, λ1 − (i− 1)λ0, . . . ]
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R V T

λ0

T T

τ

λ0 λ0 λ0 λ0

R

Figure 5. Left portion of the proximity diagram in case (B). There may be
additional edges going rightward from the rightmost vertex labeled T , but they
are irrelevant to the argument.

R V T

λ0

T T

τ

λ0 λ0 λ0λ1

V

Figure 6. Left portion of the proximity diagram in case (C). There may be
additional edges going rightward from the two rightmost vertices labeled T , but
again they are irrelevant.

for 1 ≤ i ≤ τ + 1; then by Theorem 22(B) or (C) we find that the first entry of PC(Lτ+2(W ))
is (λ1 − τλ0) − λ0 = λ1 − (τ + 1)λ0. Thus this is the multiplicity associated with the circled
vertex. Again this is in accord with the formula of Theorem 30. □

14. Vertical orders

For a regularizable focal curve germ C(k) located at pk ∈ Sk, let C(r) be its lift to the
regularization level r. For k+2 ≤ j ≤ r, we define the vertical order VOj to be the intersection
number at pr of C(r) and the divisor at infinity Ij :

VOj := (C(r) · Ij)pr

Recall that the divisor at infinity Ij first appears at level j of the tower. To interpret the
intersection number in our definition, one can either use its inverse image on S(r) — it is
convenient to continue denoting it by Ij — or one can project C(r) to a curve germ on S(j)
(likely a singular curve) and compute the intersection number there. By the standard projection
formula (for example, see [8, p. 25] or [9, Example 8.1.7]), these procedures give the same result.
As a practical matter one computes the vertical order by using a parameterization of C(r), and
VOj is the order of vanishing of the function defining the divisor at infinity Ij .

The vertical orders vector is

VO(C(k)) = (VOk+2,VOk+3, . . . ,VOr)

and the restricted vertical orders vector is

RO(C(k)) = (VOk+3,VOk+4, . . . ,VOr).
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We will soon show that these vectors just depend on the word W associated with C(r); thus
the notations VO(W ) and RO(W ) may be used. In fact RO(W ) is determined by the Goursat
word G(W ) and can thus be interpreted as an invariant of Goursat distributions; this is why we
introduce this invariant, which will appear again in our subsequent paper.

Example 31. Consider a plane curve with code word W = RV V V RV T , equivalently Puiseux
characteristic [15; 24, 25]. One such curve is x = t15, y = t24 + t25; alternatively one can obtain
such a curve by starting in the chart C(oiiioio) with the parameterizations of the active variables
x(3) = 1 + t and y(4) = t and then integrating appropriately. One deduces the following orders
of vanishing:

ordt(x) = 15

ordt(y) = 24

ordt(y
′) = 9

VO2 = ordt(x
′) = 6

VO3 = ordt(y
′′) = 3

VO4 = ordt(x
′′) = 3

ordt(x
(3)) = 0

VO6 = ordt(y
(3)) = 2

ordt(y
(4)) = 1

The fifth and seventh lifts of the curve do not meet the divisors at infinity I5 and I7, so that the
corresponding vertical orders are zero. Thus VO(W ) = (6, 3, 3, 0, 2, 0).

For a curve with code wordG(W ) = RRVVRVT , equivalently Puiseux characteristic [9; 24, 25],
we find that VO(G(W )) = (0, 3, 3, 0, 2, 0).

When one works with ordinary blowups rather than Nash modifications, the vertical order
has the following interpretation: VOj is the intersection number of Cj and Ej−1, where Cj is
the strict transform of the plane curve C and Ej−1 is the strict transform of the exceptional
divisor arising from the (j − 1)st blowup. Again as a practical matter, one computes orders of
vanishing, as illustrated by the following example.

Example 32. Working as in Example 31 with the curve x = t15, y = t24 + t25, the orders of
vanishing presented there are the same as the orders of vanishing of x, y, y1 = y/x, x1 = x/y1,
y2 = x1/y1, x2 = x1/y2, x3 = x2/y2, y3 = y2/(x3 − 1), and y4 = y3/(x3 − 1). Here we have used
the blowup coordinates explained in Section 11.

Theorem 33. For 0 ≤ j ≤ r−2, we have VOj+2 = mj−mj+1. Thus the vertical orders depend
only on the word associated with a focal curve germ.

Proof. Once again we refer to the three cases of Theorem 22, letting W be the word associated
with Cj . In case (A), the multiplicity mj is the leading entry of PC(W ) and mj+1 is the leading
entry of PC(L(W )); both of them are λ0. Since λ1 > 2λ0, Cj+2 does not meet the divisor at
infinity Ij+2 and thus V Oj+2 = 0. In cases (B) and (C), we have mj = λ0 and mj+1 = λ1 − λ0.
To see the germ Cj+1, we need to make the inverted choice, and the order of vanishing of the
new coordinate (whose vanishing gives the divisor at infinity) is λ0 − (λ1 − λ0). □

15. The small growth sequence

Suppose that D is a distribution on a manifold M ; let E be its sheaf of sections. We consider
its small growth sequence:

E = E1 ⊂ E2 ⊂ E3 ⊂ . . .
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defined by

Ej = [Ej−1, E ],
meaning the subsheaf of ΘM whose sections are generated by Lie brackets of sections of Ej−1

with sections of E and by the sections of Ej−1. Note how this differs from the Lie square sequence
in (2.1): at each step we form Lie brackets with vector fields from the beginning distribution.
For each point p ∈ X we let SGi denote the rank of E i at p; we call

SG(D, p) = SG1,SG2, . . .

the small growth vector. Simple examples show that this vector may differ from point to point
of M .

In our subsequent paper, we will consider the small growth vector of a Goursat distribution
and related invariants of the small growth sequence, as indicated in the bottom box of Figure 1,
as well as their connections to the invariants considered in this paper.
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